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Today’s agenda

■ Gates & Resources
■ Gate constructions
■ Universality
■ Physical & logical gates
■ Computational bottlenecks at the physical & logical layer



Quantum gates



Quantum universality

■ Quantum computing has two notions of a universal gate set

■ Exact universality (hardware layer):
A gate set G is exactly universal if every 2n by 2n unitary matrix can be 

       implemented by a circuit over G

■ Approximate universality (logical layer):
A gate set G is approximately universal if every unitary matrix can be 

       implemented by a circuit over G up to error e in the operator norm



Exact universality

■ Generic form:
■ Any entangling gate (e.g. CNOT, CZ) 

+ single qubit unitaries

■ A little bit more specific
■ CNOT + Z & Y (or X) rotations

■ Even more specific
■ CZ + fixed axis rotations
■ ZZ interactions + fixed axis rotations
■ Molmer-Sorenson + fixed axis rotations
■ Beamsplitters + phase shifters 

+ entangled states

More specialized



Single-qubit unitaries

■ “Rotation gates”

■ Formally…
■ Equate unitaries up to global phase
■ |Det(U)| = 1 ⇒ U(2) ≃ SU(2) x U(1)
■ SU(2) ≃ SO(3)
■ U(2) ≃ SO(3) x U(1)

■ How to implement an arbitrary rotation in SO(3)?
■ ⇒ Euler angles!
■ Informally, every rotation in 3-space is a product of 3 rotations

along non-parallel axes, e.g. x-z-x

Notation:
    U(n) - n x n unitary matrices
    SU(n) - Determinant 1 subgroup of U(n)
    O(n) - n x n orthogonal matrices
    SO(n) - Determinant 1 subgroup of O(n)



Fixed axis rotations

■ Exponentials of Pauli gates give rise to rotations around the X, Y, and Z axes



Matrix exponentials

■ Matrix exponential defined by the Taylor series expansion

■ Example: diagonal case

■ Example: diagonalizable (X=UΛU†) case



Spectral theorem

■ A matrix X is diagonalizable if and only if it is normal
■ In this case, X = UΛU† where

■ The entries of Λ are the eigenvalues of X
■ The columns of U are associated eigenvectors

■ Example: X



Single qubit universality

Theorem: Any 1-qubit unitary U can be decomposed up to global phase as
                                               RZ(a)RY(b)RZ(c)

Also works for any 2 non-parallel axes



Multi-qubit gates

■ At least one (entangling) multi-qubit gate needed for universality
■ Turns out that suffices (more on this later…)

Clifford

non-Clifford

non-entangling



Controlled gates

U

Informally:
● Applies U conditional on the control qubit 

in the |1> state
Equationally:

Algebraically:

control

target(s)



CNOT & CZ: a love story



(negative) Controlled gates

U

Informally:
● Applies U conditional on the control qubit 

in the |1> state
Equationally:

Algebraically:

Negative control

target(s)



Multiply-controlled gates

■ Can cascade controls: CkU = C(C…(CU)...)
■ Informally, applies if all controls are |1>

■ More generally, can have single-target gates
which apply U if and only if some control function
f : {0,1}k → {0,1} evaluates to 1

U

U

f



Multi-qubit exponentials

■ Some physical devices have “Z-Z” or “X-Y” or “X-X-X-X-...-X” interactions
■ Generally, this means a tunable multi-qubit gate, e.g.

■ Whether tunable or not, physical devices typically have restricted connectivity, in 
that only certain pairs of qubits can interact

Circuit routing/mapping:
compiling to conform to the 
hardware topology 



Example: circuit routing



A note on physical fidelities

■ Physical compilation seeks to increase fidelity

■ Single-qubit gates have high fidelity
■ Around of 99.9% recently

■ Multi-qubit interactions have low fidelity
■ Getting better, but still generally under 99%

■ Ways to increase fidelity
■ Reduce CNOT/multi-qubit gate counts
■ Reduce depth
■ Reduce crosstalk

Rigetti, circa 2019

Task for physical compilation is usually to route the circuit 
with the highest fidelity (e.g. fewest & shallowest CNOTs)



Fault tolerance & logical gates



Error correction & fault tolerance

■ Error rate of a classical transistor/gate/operation: 10-17

■ Error rate of a quantum gate: 10-2 – 10-3 optimistically
■ Means computations can only run ~100 gates without error correction

What do we do?

■ Option 1: Use QCs to prepare a large, shallow state & measure
■ Eg. Variational quantum eigensolver, Quantum approximate optimization, Quantum ML
■ Measurement-based QC kind of fits in here depending on implementation

■ Option 2: Compute fault-tolerantly (FT QEC)
■ Encode our state with an error correcting code (quantum error correction)
■ Perform computation directly on the encoded state (Fault-tolerance)



3-bit repetition code



Encoded gates

■ “Umbrella” argument ⇒

■ To solve it, apply gates directly on the encoded data



Error propagation

■ For fault-tolerance, gates must also not propagate errors



Fundamental theorem of FTQEC 

Theorem (Eastin-Knill):
     For any non-trivial QECC, there is no (finite or infinite) set of universal,
     transversal encoded gates

(not really)



Non-transversal gate constructions

■ Typically based on gate teleportation and magic state distillation



Relative cost of FT implementations

                     Transversal:

■ Error rate: ∝phardware
■ Circuit cost: O(1)

                Gate teleportation:

■ Error rate: ∝phardware + pMSD
■ Circuit cost: O(1) + O(1/pMSD)



Universality at the logical layer

So, we need a gate set which:

1. Is universal, and
2. Is efficient, and
3. Can be implemented fault-tolerantly on a code, via

■ Transversal (efficient) implementations
■ Gate teleportation/code switching/etc. (inefficient) implementations



The need for approximation

■ Single-qubit unitaries are uncountable 
■ ⇒ No finite or even countable gate set can implement all 1-qubit unitaries
■ Would give us extraordinary power (all Turing degrees) with just 1 qubit

■ Physically, no real problem
■ Start with some floating point approximation θ in code
■ Control system applies pulse along y direction for t nanoseconds in order to rotate by θ 
■ Check fidelity via tomography during tuning & fold the approximation into the error rate

■ At the logical layer, we don’t have that freedom
■ Have to settle for approximations



Logical compilation

■ General scheme: 
■ Compile to multi-qubit gate of choice + single qubit rotations
■ Approximate single qubit rotations

■ Errors are subadditive:



Logical universality



The Pauli group & QECC’s

Pauli group:

Stabilizer codes:



The Clifford group



Clifford simulation

Theorem (Gottesman-Knill):
    Any circuit consisting of Clifford operations & computational basis 
    measurements is classically simulable in polynomial-time (in n)



Measurement of Cliffords



Clifford group and transversality

Theorem:
    The Clifford group can be performed transversally in any self-dual CSS code

Implications:

1. In most codes, we can do Clifford group efficiently
2. To achieve universality, need an inefficient non-Clifford gate

See a QECC course…



A steady source of non-Clifford gates: 
The Clifford hierarchy

■ Clifford hierarchy is defined as

■ Important since they can be implemented
via gate teleportation

C
k

C
2
 (Clifford)

C
1
 = P (Pauli)



The QFT is teleportable



The T gate

■ Clifford+anything is (approximately) universal, so what should we choose?
■ All hail the holy third-level T gate, an order 8 Z-axis rotation:

■ Admits a simple (and efficient) gate teleportation scheme:

■ Magic state distillation on the other hand, not so nice:
■ 15-to-1 with cubic error suppression



Approximate universality of Clifford+T

■ Fact: HTHT & THTH are rotations of irrational multiples of pi around 
non-parallel axes



Efficiency of approximation

■ Solovay-Kitaev theorem (~1995)
    Given an inverse-closed set of single-qubit unitaries, any single-qubit 
    Unitary can be approximated to accuracy e using O(logc(1/e)) gates

■ Ross-Selinger (2014) gets it down to 3log(1/e) + O(loglog(1/e)) via ring 
round-off & number-theoretic characterization
                             We’ll talk a bit about this one

■ Bocharov-Roetteler-Svore (2015) down to log(1/e) + O(loglog(1/e)) 
expected cost via probabilistic techniques



Clifford+T*

We know:

■ Clifford+T is (approximately + efficiently) universal
■ It can be implemented in most codes
■ The T gate is (theoretically) more expensive than Clifford gates

*Funny story: the term was coined in my research group back in 2011

To ensure we’re working under correct 
assumptions, need to keep re-visiting 
cost of FT implementations!



Logical space-time resources



The surface code

■ Based on Kitaev’s toric code
■ Since 2010’s, most promising candidate for FTQEC

■ Threshold around 10-2 vs 10-5 for Steane code
■ Can be implemented on a 2D lattice (“low density”)

■ Define two types of stabilizers on a 2D lattice:

■ “Turn off” stabilizers in a section (a defect) to make a qubit:

Z stabilizer

X stabilizer

threshold



Fault tolerant (Clifford) gates in the surface code

■ Circa 2010’s: Braiding

■ Now: Lattice surgery
Time



Relative space-time volumes

CNOT: T distillation factory:

Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.



A compiled FTQEC computation

Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.



Lattice surgery

Litinski, A Game of Surface Codes, Quantum 2019.



Maybe not…



What about other non-Clifford gates?

■ Toffoli+Hadamard is also universal
■ …but the Toffoli gate is best implemented by using 7 T gates (optimal) in most cases

■ What about gates from higher levels?
■ …relies on |T> states to implement via gate teleportation
■ …but can result in more efficient impl’s in some regimes



Recap

■ Basic gate constructions
■ Rotations
■ Controlled gates
■ (Pauli) Exponentials

■ Universal gate sets
■ “Single qubit + entangling”
■ “Clifford + one non-Clifford gate”

■ Computational bottlenecks
■ Physical: entangling gates
■ Logical: T gates (or non-Cliffords)

Next class: compilation


