

CMPT 478/981 Spring 2025 Quantum Circuits & Compilation Matt Amy

Today's agenda

Gates & Resources

- Gate constructions
- Universality
- Physical & logical gates
- Computational bottlenecks at the physical & logical layer

Quantum universality

- Quantum computing has two notions of a universal gate set
- Exact universality (hardware layer):

A gate set G is **exactly** universal if every 2^n by 2^n unitary matrix can be implemented by a circuit over G

• Approximate universality (logical layer):

A gate set G is **approximately** universal if every unitary matrix can be implemented by a circuit over G up to error e in the operator norm

$$||U - \tilde{U}|| = \max_{|\psi\rangle} ||(U - \tilde{U})|\psi\rangle|| \le e$$

Exact universality

• Generic form:

- Any entangling gate (e.g. CNOT, CZ)
 + single qubit unitaries
- A little bit more specific
 - CNOT + Z & Y (or X) rotations

Even more specific

- CZ + fixed axis rotations
- ZZ interactions + fixed axis rotations
- Molmer-Sorenson + fixed axis rotations
- Beamsplitters + phase shifters
 + entangled states

More specialized

Single-qubit unitaries

- "Rotation gates"
- Formally...
 - Equate unitaries up to global phase
 - $|\text{Det}(U)| = 1 \Rightarrow U(2) \simeq SU(2) \ge U(1)$
 - $\mathbf{I} \quad \mathrm{SU}(2) \simeq \mathrm{SO}(3)$
 - $U(2) \simeq SO(3) \ge U(1)$
- How to implement an arbitrary rotation in SO(3)?
 - \Rightarrow Euler angles!
 - Informally, every rotation in 3-space is a product of 3 rotations along non-parallel axes, e.g. x-z-x

Notation:

U(n) - n x n unitary matrices SU(n) - Determinant 1 subgroup of U(n) O(n) - n x n orthogonal matrices SO(n) - Determinant 1 subgroup of O(n)

Fixed axis rotations

Exponentials of Pauli gates give rise to rotations around the X, Y, and Z axes

$$R_X(\theta) = e^{-i\frac{\theta}{2}X} = \begin{bmatrix} \cos\theta/2 & i\sin\theta/2\\ -i\sin\theta/2 & \cos\theta/2 \end{bmatrix}$$
$$R_Y(\theta) = e^{-i\frac{\theta}{2}Y} = \begin{bmatrix} \cos\theta/2 & -\sin\theta/2\\ \sin\theta/2 & \cos\theta/2 \end{bmatrix}$$
$$R_Z(\theta) = e^{-i\frac{\theta}{2}Z} = \begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$$

Matrix exponentials

Matrix exponential defined by the Taylor series expansion

$$e^X = \sum_{k=0}^\infty \frac{1}{k!} X^k$$

• Example: diagonal case

• Example: diagonalizable $(X=U\Lambda U^{\dagger})$ case

Spectral theorem

- A matrix X is diagonalizable if and only if it is normal
- In this case, $X = U\Lambda U^{\dagger}$ where
 - The entries of Λ are the eigenvalues of X
 - The columns of U are associated eigenvectors
 - Example: X

Single qubit universality

Theorem: Any 1-qubit unitary U can be decomposed up to global phase as $R_Z(a)R_Y(b)R_Z(c)$

Also works for any 2 non-parallel axes

Multi-qubit gates

- At least one (entangling) multi-qubit gate needed for universality
- Turns out that suffices (more on this later...)

Controlled gates

Informally:

 Applies U conditional on the control qubit in the |1> state

Equationally:

Algebraically:

CNOT & CZ: a love story

(negative) Controlled gates

Negative control

Informally:

• Applies U conditional on the control qubit in the |1> state

Equationally:

Algebraically:

Multiply-controlled gates

- Can cascade controls: $C^kU = C(C...(CU)...)$
- Informally, applies if all controls are |1>

 More generally, can have single-target gates which apply U if and only if some control function f: {0,1}^k → {0,1} evaluates to 1

Multi-qubit exponentials

- Some physical devices have "Z-Z" or "X-Y" or "X-X-X-X-...-X" interactions
- Generally, this means a tunable multi-qubit gate, e.g.
- Whether tunable or not, physical devices typically have restricted connectivity, in that only certain pairs of qubits can interact

 $e^{i\frac{\theta}{2}Z\otimes Z}$

Circuit routing/mapping: compiling to conform to the hardware topology

Example: circuit routing

A note on physical fidelities

- Physical compilation seeks to **increase** fidelity
- Single-qubit gates have **high** fidelity
 - Around of 99.9% recently
- Multi-qubit interactions have low fidelity
 - Getting better, but still generally under 99%
- Ways to increase fidelity
 - Reduce CNOT/multi-qubit gate counts
 - Reduce depth
 - Reduce crosstalk

Task for physical compilation is usually to route the circuit with the highest fidelity (e.g. fewest & shallowest CNOTs)

Rigetti, circa 2019

T_1	T_2^*	$\mathcal{F}_{1\mathrm{q}}$	$\mathcal{F}_{ m RO}$		A_0	$f_{ m m}$	$t_{\rm CZ}$	$\mathcal{F}_{2\mathrm{q}}$	
μs	$\mu { m s}$				Φ/Φ_0	MHz	ns		
15.2 ± 2.5	7.2 ± 0.7	0.9815	0.938	0 - 5	0.27	94.5	168	0.936	
$\textbf{17.6} \pm 1.7$	7.7 ± 1.4	0.9907	0.958	0 - 6	0.36	123.9	197	0.889	
18.2 ± 1.1	10.8 ± 0.6	0.9813	0.970	1 - 6	0.37	137.1	173	0.888	
31.0 ± 2.6	16.8 ± 0.8	0.9908	0.886	1 - 7	0.59	137.9	179	0.919	
$\textbf{23.0}\pm0.5$	5.2 ± 0.2	0.9887	0.953	2 - 7	0.62	87.4	160	0.817	
22.2 ± 2.1	11.1 ± 1.0	0.9645	0.965	2 - 8	0.23	55.6	189	0.906	
26.8 ± 2.5	26.8 ± 2.5	0.9905	0.840	4 - 9	0.43	183.6	122	0.854	
29.4 ± 3.8	13.0 ± 1.2	0.9916	0.925	5 - 10	0.60	152.9	145	0.870	
24.5 ± 2.8	13.8 ± 0.4	0.9869	0.947	6 - 11	0.38	142.4	180	0.838	
20.8 ± 6.2	11.1 ± 0.7	0.9934	0.927	7 - 12	0.60	241.9	214	0.870	
17.1 ± 1.2	10.6 ± 0.5	0.9916	0.942	8 - 13	0.40	152.0	185	0.881	
16.9 ± 2.0	49 ± 10	0.9901	0.900	9 - 14	0.62	130.8	139	0.872	
82 ± 0.9	10.9 ± 1.0	0.0001	0.942	10 - 15	0.53	142.1	154	0.854	
18.7 ± 2.0	10.3 ± 1.4 12 7 ± 0.4	0.0033	0.042	10 - 16	0.43	170.3	180	0.838	
13.7 ± 2.0	12.7 ± 0.4	0.9955	0.921	11 - 16	0.38	160.6	155	0.891	
13.9 ± 2.2	9.4 ± 0.7	0.9910	0.947	11 - 17	0.29	85.7	207	0.844	
20.8 ± 3.1	7.3 ± 0.4	0.9852	0.970	12 - 17	0.36	177.1	184	0.876	
16.7 ± 1.2	7.5 ± 0.5	0.9906	0.948	12 - 18	0.28	113.9	203	0.886	
24.0 ± 4.2	8.4 ± 0.4	0.9895	0.921	13-18	0.24	66.2	152	0.936	
16.9 ± 2.9	12.9 ± 1.3	0.9496	0.930	13 - 19	0.62	109.6	181	0.921	
24.7 ± 2.8	9.8 ± 0.8	0.9942	0.930	14 - 19	0.59	188.1	142	0.797	

Error correction & fault tolerance

- Error rate of a classical transistor/gate/operation: 10⁻¹⁷
- Error rate of a quantum gate: $10^{-2} 10^{-3}$ optimistically
 - Means computations can only run ~ 100 gates without error correction

What do we do?

- Option 1: Use QCs to prepare a large, shallow state & measure
 - Eg. Variational quantum eigensolver, Quantum approximate optimization, Quantum ML
 - Measurement-based QC kind of fits in here depending on implementation
- Option 2: Compute fault-tolerantly (FT QEC)
 - Encode our state with an error correcting code (quantum error correction)
 - Perform computation directly on the encoded state (Fault-tolerance)

3-bit repetition code

• "Umbrella" argument \Rightarrow

• To solve it, apply gates directly on the encoded data

Error propagation

• For fault-tolerance, gates must also not propagate errors

Fundamental theorem of FTQEC (not really)

Theorem (Eastin-Knill):

For any non-trivial QECC, there is no (finite or infinite) set of universal, transversal encoded gates

Non-transversal gate constructions

• Typically based on gate teleportation and magic state distillation

Relative cost of FT implementations

Gate teleportation:

Error rate: ∞p_{hardware}
 Circuit cost: O(1)

Transversal:

Error rate: $\propto p_{hardware} + p_{MSD}$ Circuit cost: O(1) + O(1/p_{MSD})

Universality at the logical layer

So, we need a gate set which:

- 1. Is universal, and
- 2. Is efficient, and
- 3. Can be implemented fault-tolerantly on a code, via
 - Transversal (efficient) implementations
 - Gate teleportation/code switching/etc. (inefficient) implementations

The need for approximation

Single-qubit unitaries are uncountable

- \Rightarrow No finite or even **countable** gate set can implement **all** 1-qubit unitaries
- Would give us extraordinary power (all Turing degrees) with just 1 qubit
- Physically, no real problem
 - Start with some floating point approximation θ in code
 - Control system applies pulse along y direction for t nanoseconds in order to rotate by θ
 - Check fidelity via tomography during tuning & fold the approximation into the error rate
- At the logical layer, we don't have that freedom
 - Have to settle for approximations

Logical compilation

General scheme:

- Compile to multi-qubit gate of choice + single qubit rotations
- Approximate single qubit rotations
- Errors are subadditive:

The Pauli group & QECC's

Pauli group:

Stabilizer codes:

The Clifford group

Clifford simulation

Theorem (Gottesman-Knill):

Any circuit consisting of Clifford operations & computational basis measurements is classically simulable in polynomial-time (in n)

Measurement of Cliffords

Clifford group and transversality

See a QECC course...

Theorem:

The Clifford group can be performed transversally in any self-dual CSS code

Implications:

- 1. In most codes, we can do Clifford group efficiently
- 2. To achieve universality, need an inefficient non-Clifford gate

A steady source of non-Clifford gates: The Clifford hierarchy

Clifford hierarchy is defined as

$$\mathcal{C}_{1,n} = \mathcal{P}_n$$
$$\mathcal{C}_{k,n} = \{ U \mathcal{P}_n U^{\dagger} \subseteq \mathcal{C}_{k-1,n} \mid U \in U(2^n) \}$$

Important since they can be implemented via gate teleportation

The T gate

- Clifford+anything is (approximately) universal, so what should we choose?
- All hail the holy third-level T gate, an order 8 Z-axis rotation:

$$T = R_3 = \begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix}, \qquad \omega = e^{i\pi/4}$$

Admits a simple (and efficient) gate teleportation scheme:

- Magic state distillation on the other hand, not so nice:
 - 15-to-1 with cubic error suppression

Approximate universality of Clifford+T

• Fact: **HTHT & THTH** are rotations of irrational multiples of pi around non-parallel axes

Efficiency of approximation

Solovay-Kitaev theorem (~1995)

Given an inverse-closed set of single-qubit unitaries, any single-qubit Unitary can be approximated to accuracy e using $O(\log^{c}(1/e))$ gates

- Ross-Selinger (2014) gets it down to 3log(1/e) + O(loglog(1/e)) via ring round-off & number-theoretic characterization
 We'll talk a bit about this one
- Bocharov-Roetteler-Svore (2015) down to log(1/e) + O(loglog(1/e)) expected cost via probabilistic techniques

Clifford+T*

We know:

- Clifford+T is (approximately + efficiently) universal
- It can be implemented in most codes
- The T gate is (theoretically) more expensive than Clifford gates

To ensure we're working under correct assumptions, need to keep re-visiting cost of FT implementations!

*Funny story: the term was coined in my research group back in 2011

The surface code

Based on Kitaev's toric code

- Since 2010's, most promising candidate for FTQEC
 - Threshold around 10⁻² vs 10⁻⁵ for Steane code
 - Can be implemented on a 2D lattice ("low density")
- Define two types of stabilizers on a 2D lattice:

"Turn off" stabilizers in a section (a defect) to make a qubit:

Fault tolerant (Clifford) gates in the surface code

Relative space-time volumes

CNOT:

T distillation factory:

A compiled FTQEC computation

Lattice surgery

(a) Fast setup for $p = 10^{-4}$

Figure 23: Fast setups using fast data blocks and 11 15-to-1 distillation blocks for $p = 10^{-4}$ or 5 116-to-12 distillation block for $p = 10^{-3}$.

Litinski, A Game of Surface Codes, Quantum 2019.

(b) Fast setup for $p = 10^{-3}$

Maybe not...

arXiv > quant-ph > arXiv:1905.06903

Quantum Physics

[Submitted on 16 May 2019 (v1), last revised 6 Nov 2019 (this version, v3)]

Magic State Distillation: Not as Costly as You Think

Daniel Litinski

Quantum Physics

[Submitted on 26 Sep 2024]

Magic state cultivation: growing T states as cheap as CNOT gates

Craig Gidney, Noah Shutty, Cody Jones

What about other non-Clifford gates?

Toffoli+Hadamard is also universal

• ...but the Toffoli gate is best implemented by using 7 T gates (**optimal**) in most cases

What about gates from higher levels?

- ...relies on |T> states to implement via gate teleportation
- ... but can result in more efficient impl's in some regimes

Recap

- Basic gate constructions
 - Rotations
 - Controlled gates
 - (Pauli) Exponentials
- Universal gate sets
 - "Single qubit + entangling"
 - "Clifford + one non-Clifford gate"
- Computational bottlenecks
 - Physical: entangling gates
 - Logical: T gates (or non-Cliffords)

Next class: compilation