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Today’s agenda

Gates & Resources

= Gate constructions

= Universality

m  Physical & logical gates

s Computational bottlenecks at the physical & logical layer
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Quantum universality

Quantum computing has two notions of a universal gate set

Exact universality (hardware layer):
A gate set G is exactly universal if every 2" by 2" unitary matrix can be
implemented by a circuit over G

Approximate universality (logical layer):
A gate set G is approximately universal if every unitary matrix can be
implemented by a circuit over G up to error e in the operator norm

|U = U|| = max||[(U = U)|¢)
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Exact universality

Generic form:
= Any entangling gate (e.g. CNOT, CZ)
+ single qubit unitaries

A little bit more specific
m CNOT+Z &Y (or X) rotations

Even more specific

CZ + fixed axis rotations

77 interactions + fixed axis rotations
Molmer-Sorenson + fixed axis rotations
Beamsplitters + phase shifters

+ entangled states

More specialized



Single-qubit unitaries

“Rotation gates”

Formally...

= Equate unitaries up to global phase
|IDet(U)| =1 = U(2) = SU2) x U(1)
SU(2) = SO(3)
U(2) = SO(3) x U(1)

How to implement an arbitrary rotation in SO(3)?

m = Euler angles!

= Informally, every rotation in 3-space is a product of 3 rotations

along non-parallel axes, e.g. x-z-x

Notation:
U(n) - n x n unitary matrices
SU(n) - Determinant 1 subgroup of U(n)
O(n) - n x n orthogonal matrices
SO(n) - Determinant 1 subgroup of O(n)

11)




Fixed axis rotations

Exponentials of Pauli gates give rise to rotations around the X, Y, and Z axes
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Matrix exponentials

Matrix exponential defined by the Taylor series expansion
Example: diagonal case

Example: diagonalizable (X=UAU") case



Spectral theorem

A matrix X 1s diagonalizable if and only if it is normal

In this case, X = UAUT where

m The entries of A are the eigenvalues of X

m The columns of U are associated eigenvectors
Example: X



Single qubit universality

Theorem: Any 1-qubit unitary U can be decomposed up to global phase as

R, (a)R(b)R(c)

Also works for any 2 non-parallel axes




Multi-qubit gates

At least one (entangling) multi-qubit gate needed for universality
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Turns out that suffices (more on this later..
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Controlled gates

control

Informally:
e Applies U conditional on the control qubit
in the | 1> state
Equationally:

/ Algebraically:

target(s)




CNOT & CZ: a love story



(negative) Controlled gates

Negative control

/ Informally:

T e Applies U conditional on the control qubit

in the | 1> state
Equationally:

u |

/ Algebraically:

target(s)




Multiply-controlled gates

Can cascade controls: CXU = C(C...(CU)...)
Informally, applies if all controls are |1>

More generally, can have single-target gates
which apply U if and only 1f some control function
f:{0,1}* — {0,1} evaluates to 1




Multi-qubit exponentials

Some physical devices have “Z-7Z” or “X-Y” or “X-X-X-X-...-X”’ interactions
Generally, this means a tunable multi-qubit gate, e.g.

LAY/
Whether tunable or not, physical devices typically have restricted connectivity, in
that only certain pairs of qubits can interact

IBM’s 10 Quantum Device Lineup

Circuit routing/mapping:
compiling to conform to the
hardware topology

Johannesburg Almaden Ourense

Poughkeepsie Boeblingen Valencia
Singapore Vigo



Example: circuit routing {



A note on physical fidelities

Physical compilation seeks to increase fidelity

Single-qubit gates have high fidelity
= Around of 99.9% recently

Multi-qubit interactions have low fidelity
= Getting better, but still generally under 99%

Ways to increase fidelity
= Reduce CNOT/multi-qubit gate counts
= Reduce depth
= Reduce crosstalk

Task for physical compilation is usually to route the circuit
with the highest fidelity (e.g. fewest & shallowest CNOTs)

tti, circa 201

Rige

T T Flq Fro
I [s

15.2+25 7.2+0.7 |0.9815 0.938
17.6 + 1.7 7.7+1.4 ]0.9907 0.958
18.2+ 1.1 10.8 £ 0.6 |0.9813 0.970
31.0 £ 2.6 16.8 £ 0.8 |0.9908 0.886
23.0+0.5 5.24+0.2 |0.9887 0.953
22.2+21 11.1 +£1.0 |0.9645 0.965
26.8+2.5 26.8 +2.5 |0.9905 0.840
29.4+ 3.8 13.0+ 1.2 |0.9916 0.925
24.5+28 13.8 0.4 |0.9869 0.947
20.8 £6.2 11.1 £0.7 |0.9934 0.927
17.1+1.2 10.6 £ 0.5 |0.9916 0.942
16.9 +2.0 4.94+1.0 |0.9901 0.900
8.2+09 10.9+1.4 ]0.9902 0.942
18.7+2.0 12.7+0.4 ]0.9933 0.921
13.9+2.2 9.4+0.7 |0.9916 0.947
20.8 +3.1 7.3+04 ]0.9852 0.970
16.7 +1.2 7.5+0.5 ]0.9906 0.948
24.0+4.2 8.4+04 |0.9895 0.921
16.9+29 12.9+1.3 |0.9496 0.930
24.7+2.8 9.8+ 0.8 |0.9942 0.930

Ao fm |tcz  Foq

®/Py MHz ns
0-5 0.27 94.5 |168 0.936
0—-6 036 1239 |197 0.889
1-6 037 1371 |173 0.888
1-7 059 1379 |179 0.919
2—7 0.62 87.4 |160 0.817
2—-8 0.23 55.6 |189 0.906
4—9 043 183.6 |122 0.854
5—10 0.60 1529 [145 0.870
6—11 0.38 1424 |[180 0.838
7—12 0.60 2419 |214 0.870
8§—13 0.40 152.0 |185 0.881
9—-14 0.62 130.8 |[139 0.872
10—-15 0.53 142.1 |154 0.854
10—-16 043 170.3 |180 0.838
11-16 0.38 160.6 |155 0.891
11-17 0.29 85.7 |207 0.844
12—-17 036 177.1 |184 0.876
12—-18 0.28 113.9 |203 0.886
13—-18 0.24 66.2 152 0.936
13—-19 0.62 109.6 |181 0.921
14—-19 0.59 188.1 |142 0.797
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Error correction & fault tolerance

Error rate of a classical transistor/gate/operation: 107!
Error rate of a quantum gate: 10 — 10~ optimistically

= Means computations can only run ~100 gates without error correction

What do we do?

Option 1: Use QCs to prepare a large, shallow state & measure
m Eg. Variational quantum eigensolver, Quantum approximate optimization, Quantum ML
m  Measurement-based QC kind of fits in here depending on implementation

Option 2: Compute fault-tolerantly (FT QEC)

= Encode our state with an error correcting code (quantum error correction)
m  Perform computation directly on the encoded state (Fault-tolerance)



3-bit repetition code



Encoded gates

“Umbrella” argument = \M\ (/ {[ W |
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Error propagation

For fault-tolerance, gates must also not propagate errors



Fundamental theorem of FTQEC

(not really)

Theorem (Eastin-Knill):
For any non-trivial QECC, there is no (finite or infinite) set of universal,
transversal encoded gates



Non-transversal gate constructions

Typically based on gate teleportation and magic state distillation



Relative cost of FT implementations

Transversal: Gate teleportation:
Error rate: OCp hardware Error rate: OCp hardware + pMSD
Circuit cost: O(1) Circuit cost: O(1) + O(1/pyqp,)




Universality at the logical layer

So, we need a gate set which:

Is universal, and
Is efficient, and
Can be implemented fault-tolerantly on a code, via

m Transversal (efficient) implementations
= Gate teleportation/code switching/etc. (inefficient) implementations



The need for approximation

Single-qubit unitaries are uncountable

m = No finite or even countable gate set can implement all 1-qubit unitaries
= Would give us extraordinary power (all Turing degrees) with just 1 qubit

Physically, no real problem

m  Start with some floating point approximation & in code
m  Control system applies pulse along y direction for # nanoseconds in order to rotate by 6
m  Check fidelity via tomography during tuning & fold the approximation into the error rate

At the logical layer, we don’t have that freedom

m  Have to settle for approximations



Logical compilation

General scheme:

= Compile to multi-qubit gate of choice + single qubit rotations
m  Approximate single qubit rotations

Errors are subadditive:
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The Pauli group & QECC’s

Pauli group:

Stabilizer codes:



The Clifford group



Clifford simulation

Theorem (Gottesman-Knill):
Any circuit consisting of Clifford operations & computational basis
measurements is classically simulable in polynomial-time (in n)



Measurement of Cliffords



Clifford group and transversality

See a QECC course...

Theorem: \

The Clifford group can be performed transversally in any self-dual CSS code

Implications:

1. In most codes, we can do Clifford group efficiently
2. To achieve universality, need an inefficient non-Clifford gate




A steady source of non-Clifford gates:
The Clifford hierarchy

Clifford hierarchy is defined as
Cl,n = Pn
Chp = {UPUT CCony | U € U@}

Important since they can be implemented
via gate teleportation

C, (Clifford)

C =P (Pauli)



The QFT is teleportable -
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The T gate ﬁ

Clifford+anything 1s (approximately) universal, so what should we choose?
All hail the holy third-level T gate, an order 8 Z-axis rotation:

Admits a simple (and efficient) gate teleportation scheme:

Magic state distillation on the other hand, not so nice:
= 15-to-1 with cubic error suppression



Approximate universality of Clifford+T

Fact: HTHT & THTH are rotations of irrational multiples of p1 around
non-parallel axes



Efficiency of approximation

Solovay-Kitaev theorem (~1995)
Given an inverse-closed set of single-qubit unitaries, any single-qubit
Unitary can be approximated to accuracy e using O(log®(1/e)) gates

Ross-Selinger (2014) gets it down to 3log(1/e) + O(loglog(1/e)) via ring
round-off & number-theoretic characterization
We'll talk a bit about this one

Bocharov-Roetteler-Svore (2015) down to log(1/e) + O(loglog(1/e))
expected cost via probabilistic techniques



Clifford+T*

We know:

Clifford+T is (approximately + efficiently) universal
It can be implemented in most codes
The T gate 1s (theoretically) more expensive than Clifford gates

To ensure we’re working under correct
assumptions, need to keep re-visiting
cost of FT implementations!

*Funny story: the term was coined in my research group back in 2011
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The surface code

Based on Kitaev’s toric code
Since 2010’s, most promising candidate for FTQEC

m  Threshold around 102 vs 107 for Steane code

Logical X error rate (p| )

threshold

d=7 —

d=11
d=13
d=15—
d=17
d=19 -
d=21 >
d=25—x
d=35—%
d =45
g=05

s Can be implemented on a 2D lattice (“low density”) 0%
1. s
Define two types of stabilizers on a 2D lattice: :] }3 ' .
SEDE Bu e
—1r 111 |

“Turn off” stabilizers in a section (a defect) to make a qubit:

|

-9~

1% 103
Depolarizing probability (p)

1x 1072

X stabilizer

Z stabilizer




Fault tolerant (Clifford) gates in the surface code

Circa 2010’s: Braiding LL (lw

Now: Lattice surgery
s
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Relative space-time volumes

CNOT: T distillation factory:

Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.
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Babbush et al. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 2018.

A compiled FTQEC computat



Lattice surgery

(a) Fast setup for p = 10~* (b) Fast setup for p = 1073

: | [T] [T] [T] L‘ ’J
[ 1 [ 1 [ 1

) A I:I _hn

[T distillation block storage tiles |—|_

/]
[ fast data block unused tiles | __rl

Figure 23: Fast setups using fast data blocks and 11 15-to-1 distillation blocks for p = 10™* or 5 116-to-12 distillation block for
p=10"3.

Litinski, A Game of Surface Codes, Quantum 2019.



Maybe not...

d I‘<1V > quant-ph > arXiv:1905.06903

Quantum Physics

[Submitted on 16 May 2019 (v1), last revised 6 Nov 2019 (this version, v3)]

Magic State Distillation: Not as Costly as You Think

Daniel Litinski

= I‘l_{]_v > quant-ph > arXiv:2409.17595v1

Quantum Physics

[Submitted on 26 Sep 2024]

Magic state cultivation: growing T states as cheap as CNOT gates
Craig Gidney, Noah Shutty, Cody Jones



What about other non-Clifford gates?

Toffoli+Hadamard is also universal

= ...but the Toffoli gate is best implemented by using 7 T gates (optimal) in most cases
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What about gates from higher levels?

m ...relies on |T> states to implement via gate teleportation

m ...but can result in more efficient impl’s in some regimes

= | I‘ (]_V > quant-ph > arXiv:1603.04230

Quantum Physics
[Submitted on 14 Mar 2016 (v1), last revised 14 Oct 2016 (this version, v2)]

An efficient magic state approach to small angle rotations

Earl T. Campbell, Joe O'Gorman



Recap

Basic gate constructions

= Rotations

m  Controlled gates

m (Pauli) Exponentials
Universal gate sets

m  “Single qubit + entangling”

s “Clifford + one non-Clifford gate”
Computational bottlenecks

m  Physical: entangling gates
m Logical: T gates (or non-Cliffords)

Next class: compilation



